

Future Plans for Workflows Johannes Jahan Veronica Dexheimer

Outline

What we have (or are finishing):

- Zero temperature
- Finite temperature
- Standard outputs (+ CompOSE, QLIMR, flavor equil)

What we will do next:

- Extend EoS's to different domains
- Work on non-EoS modules
- Connect EoS's in different ways
- Combine different EoS and modules
- Develop more observable modules

Gantt Chart

	Yr 1		Yr 2		Yr 3		Yr 4		Yr 5	
	6	12	18	24	30	36	42	48	54	60
Intellectual Merit: the Creation of the MUSES CI										
EoS Module Optimization										
Heavy Ion Modules										
O-HI 1 (P: Ratti, S: UH PD, T: N/A)										
O-HI 2 (P: Ratti, S: UH PD, T: N/A)	-									
O-HI 3 (P: JNH, S: UIUC PD, T: REU)										
Effective Model Modules										
O-EM 1 (P: Ratti, S: Noronha, T: UH GRA)										
O-EM 2 (P: Noronha, S: UIUC PD, T: N/A)										
O-EM 3 (P: Dexheimer, S: Kent PD, T: N/A)										
Cold Nuclear Matter Modules										
O-CNM 1 (P: Baym, S: JNH, T: UIUC GRA)										
O-CNM 2 (P: Holt, S: TAMU GRA, T: N/A)										
O-CNM 3 (P: Steiner, S: Dexheimer, T: UTK GRA)										
Integration and Interoperability										
I-EOS 1 (P: JNH, S: Yunes, T: UIUC GRA)										
I-EOS 2 (P: All Co-PIs, S: Steiner, T: Kent PD)										
I-EOS 3 (P: Manning, S: Haas, T: JNH)										
I-OBS 1 (P: All Co-PIs, S: All Sr. P, T: UIUC PD)										
I-OBS 2 (P: All Co-PIs, S: All Sr. P, T: GRAs)										
I-OBS 3 (P: JNH, S: UIUC PD, T: N/A)										

Gantt Chart

I-EOS 1. Smooth transitions (i.e. continuous derivatives) when connecting modules in the same phase.

I-EOS 2. <u>Phase Matching modules at first-order phase transition coexisting lines or regions through different</u> approaches, including interpolations and physical mixtures of phases.

I-EOS 3. Development of an integrated and interoperable EoS Package.

Gantt Chart

	Yr 1		Yr 2		Yr 3		Yr 4		Yr 5		
	6	12	18	24	30	36	42	48	54	60	
Intellectual Merit: the Creation of the MUSES CI											
Web-based Tools and Services.											
D-1 (P: Carrasco Kind, S: Manning, T: N/A)											
API Server and Job Management System.											
D-2 (P: Carrasco Kind, S: Manning, T: N/A)											
Deployment Framework.		-									
D-3 (P: Carrasco Kind, S: Manning, T: N/A)											
Broader Impacts: Community integration, education, outreach											
Release (P: Carrasco Kind, S: Manning, T: Yunes)								Annua	ıl		
User Support (P: Manning, S: JNH T: Yunes)						Continuous					
Tutorials (P: JNH, S: Manning, T: UIUC REU)						Continuous					
Workshops (P: Yunes, S: Ratti, T: All Co-PIs)		WS1		WS2		WS3		WS4		WS5	
Publications and Presentations (All personnel)				Continuous							

What we have: zero T

- 2D UTK, χEFT, CMF

 $(\mu_B and \mu_{\mathcal{D}} - for CMF also \mu_S)$

- Fully integrated into lepton module *(beta equilibrium and charge neutrality)*
- <u>Connected</u> through synthesis module (using hyperbolic tan – not yet producing microscopic properties)
- Going through QLIMR
- Only individual EoS go into flavor equilibration module
- CompOSE for CMF only

FIG. 1. Results from the Lepton module for different EoS's: charge-neutral β -equilibrium charge chemical potential, (hadronic and quark) charge fraction, electron fraction, and muon fraction, all as a function of baryon chemical potential.

FIG. 2. Flavor relaxation time $1/\gamma$ in the density-temperature plane for the χ EFT 450 EoS. The gray shaded region indications the density/temperature range where the flavor relaxation time scale is comparable to the ~1 ms period of the density oscillations expected in neutron stars and their mergers

What we have: finite T

- 2D EoS: Ising-TExS and Holographic *(including 1st order PT and CP)*
- 4D EoS: BQS (including crossover)
- <u>No connection</u> yet
 but HRG embedded by construction in BQS and Ising-TExS

Future Papers so far using MUSES workflows

- Study of phase stability within 3-D CMF: $\mu_{\rm B}$, $\mu_{\rm O}$, and $\mu_{\rm S}$ (finishing)
- Connecting UTK, χEFT, and CMF with lepton, synthesis and QLIMR *(finishing)*
- Connecting QLIMR with modified Gaussian Processes (*in progress*)
- BQS EOS ran in CCAKE (paper out tomorrow)
- PDG21+ list used to calculate shear viscosity for heavy-ion collisions *(finishing)*
- Bayesian analysis in holography at finite strangeness or electric charge (*in progress*)
- Bayesian holography with 1st order line matched with HRG (over summer)

What do we do next? Extend EoS's to different domains

- New nuclear properties module
- CMF written at finite T and B
- UTK explored in T
- UTK including strangeness and finite μ_{s}
- χ EFT including different potentials (*T*)
- Extend Holographic to μ_0 and μ_s (+*mixed angles..*)
- TExS (lattice-based reaching 700 MeV):
 - Extend 2D-TExS ≫ 4D-TExS
 - Include critical line/surface in 4D-TExS..?
- Add HRG module (whole hadronic phase region)
- Test large YQ's for supernovae

What do we do next? Develop more observable modules

- <u>Partial pressures:</u> breaking down pressure contributions from each combination of (B,Q,S) values *(coupling to BQS module)*
- <u>Freeze-out physics from FIST</u>: extract values of (T,μ_i) from particle yields (single-module workflow)

Transport coefficients: extracting transport coefficients from any given EoS using a microscopic approach (*e.g.* DQPM) by matching thermo (coupling to any EoS module » proof of concept with Holographic)

What do we do next? Work on non- EoS's modules

- Produce microscopic properties from hyperbolic tan in synthesis module
- Use QLMR to study metastable phases (not going to unstable: for deconfinement in CMF = it is just the whole hadronic branch)
- CompOSE output for combined EoS
- Upload files for input
- New derivative module (also calculating stability and causality)
- Functional forms: Gaussian processes, spectrals EoS, polytropes

 n_B

What do we do next? Connect EoS's in different ways

- Pasta phases
- Mixed phases
- First order PT's?
- We will not worry about gaps

