
BQS EoS Module

Developed by: Hitansh Shah, Johannes Jahan (MUSES module)
P. Parotto, J. Karthein (initial core code)

C. Ratti

MUSES collaboration meeting
May 16th-17th 2023

● Physics context

● Module Status

● Inputs format

● Outputs format

● Module core code

Overview

Physics content
Based on a code written by P. Parotto & J. Karthein (after the work presented in Phys.Rev.C 100 (2019) 6, 064910).

Calculation of pressure via a Taylor expansion towards the different directions:

https://inspirehep.net/literature/1720588

Physics content
Based on a code written by P. Parotto & J. Karthein (after the work presented in Phys.Rev.C 100 (2019) 6, 064910).

Calculation of pressure via a Taylor expansion towards the different directions:

with parametrised susceptibilities:

 -

 -

Applicable within the ranges

https://inspirehep.net/literature/1720588

Module status

+ Documentation

Inputs format

BQS_EoS_input_user.yaml

def: [30, 800] ; 5 (MeV)

def: [0, 450] ; 5 (MeV)

+ (def: False)

 (def: False)

 (def: False)

 (def: False)

 (def: False)

 (def: False)

BQS_EoS_input_coef.yaml

Outputs format

item:
 - (MeV)

(MeV)
(MeV)
(MeV)
(MeV/fm^3)

 (MeV^3)
(MeV^3)
(MeV^3)
(MeV^4)
(MeV^3)

BQS_EoS_thermo.yaml BQS_EoS_deriv.yaml

item:
 - (MeV)

(MeV)
(MeV)
(MeV)

Module core code
New potential features:

● higher order derivatives (?)

Optimisation:
Currently, code takes ~30min to calculate the whole 4D phase diagram (112M points @ δ=5 MeV)

~30s for full 3D (1.25M points) / ~4.5s for full 2D (14k points)

➢ Adding switchers to the code itself to avoid unnecessary variable calculation might reduce this time
➢ Parallelisation of the code (?)

…. and what about the Python converters?

Takes ~1min to convert data for a full 2D phase diagram

➢ Continuous dump mandatory (to avoid temporary memory space saturation)
+ parallelisation of the converter (doable with YAML dumper..?)

Current status:

❖ Code works and run properly for the full 4D phase diagram

❖ Wrapping architecture (YAML in / out) complete

Left to do:

❏ Containerise the “vanilla” version of the code (provides only thermodynamics)
❏ Integrate the module into calculation engine
❏ Add susceptibilities and derivatives in the YAML output
❏ Discuss addition of additional derivatives
❏ Optimise the code (switchers + parallelisation of core code / Python converters)
❏ Complete the documentation

Summary

