
Calculation
Engine

Andrew Manning
National Center for Supercomputing Applications

Logically, the calculation engine (CE) is a software system that

● manages user-submitted processings jobs
○ a job is the execution of one or more modules in a workflow.

● manages the movement of data between subsystems
● serves data for download
● enforces access control
● organizes and stores information in a structured database
● tracks data provenance

What is the calculation engine (CE)?

The simplest case is a single module
execution such as calculating an
equation of state.A workflow is a processing

sequence of one or more
modules, in which output of one
module is used as the input to the
subsequent modules.

Workflows

The most common multi-module
sequence will generate an EoS and
then calculate some physical
observables using a second module.A workflow is a processing

sequence of one or more
modules, in which output of one
module is used as the input to the
subsequent modules.

Workflows

Perspective: data flow

From the perspective of data flow, the CE

● takes the input requests from users and
● launches processing jobs on our compute

nodes,
● keeping track of job status and metadata in

a database,

and handling things like

● notifying users when their jobs are
complete

● returning output data

Architecturally, the CE is comprised
of several logical components.

Some of these components may be
implemented using third-party
solutions, custom code developed at
NCSA, or blends of both.

Perspective: software components

Python/Django

NGINX

PostgreSQL,
MariaDB

Keycloak,
Python/Django

Parsl,
Python/Django

Some terminology

● Cyberinfrastructure consists of systems, data and information management,
advanced instruments, visualization environments, and people, all linked
together by software and advanced networks to improve scholarly
productivity and enable knowledge breakthroughs and discoveries not
otherwise possible.

● In computer programming, a software framework is an abstraction in which
software, providing generic functionality, can be selectively changed by
additional user-written code, thus providing application-specific software. It
provides a standard way to build and deploy applications and is a
universal, reusable software environment that provides particular
functionality as part of a larger software platform to facilitate the development
of software applications, products and solutions.

https://www.researchgate.net/publication/49471518_What_is_Cyberinfrastructure
https://en.m.wikipedia.org/wiki/Software_framework

Python frameworks

● The CE is written in Python. We all love Python.

● We have limited developer resources, so we want to maximize productivity with
judicious choice of framework

● There are many Python frameworks. We need one that provides
○ Plugin for OIDC authentication (use our MUSES single sign-on system)

○ Session management (cookies, tokens)

○ Object-relational mapping: is a technique that allows you to manipulate data in a relational
database using object-oriented programming.

○ Support for rapid REST API prototyping, driven by Python-defined data models

https://www.djangoproject.com/

Running CE locally vs as a hosted service

Modules must be containerized:

● Independent module development teams
need freedom to choose their software
environment

● In production, the CE must run the
modules in containers for compatibility with
arbitrary compute nodes

Containers are a challenge for researchers who
want to run the CE locally:

● They must install Docker on their workstation

● If we want to reduce the complexity of their
local software environment (installed libraries,
packages, and shell config) required to run
the CE, then it must run as a container, but
then the CE must implement a
Docker-in-Docker system, which is not very
portable between operating systems.

● Conda or Docker Compose

Running CE locally vs as a hosted service

We will definitely run the CE as a hosted
service via our Kubernetes cluster, and
researchers can use this service according to
some access control scheme we have yet to
devise.

Advantages

● No need for scientists to install software
● Good publicity for MUSES and increased

community investment in our success

Disadvantages

● Computing resources are limited
● Increased responsibility for operational

stability and uptime
● Immediately confronted with issues related

to data provenance and reproducibility

Integration is the process of adapting
a code module to comply with the
MUSES framework we have defined to
allow the CE to execute workflows.

● Containerization
○ Modules must build and push container

images that the CE can download and
execute via Docker.

● Manifest
○ Each module defines a so-called

manifest file, declaring information about
itself in a standard format expected by
the CE

● API specification
○ The inputs and outputs of a module must

be declared in machine-level detail using
the OpenAPI standard format

Integration

Integration: Module registration

Declare a reference name for the module and the git URL and revision for the
modules’ manifests.

List of registered modules, including some
metadata and where to locate their manifests

modules:
- name: "test_module_1"
 path: "/modules/test-module-1"
 url: ""
 targetRevision: ""
- name: "test_module_2"
 path: ""
 url: "https://gitlab.com/nsf-muses/template-module/template-module"
 targetRevision: "72ab988f7cf2603880d7647c318d63ba22f789a6"

See this forum post for more details.

https://forum.musesframework.io/t/calculation-engine-prototype-with-basic-workflow-functionality/610

Integration: Module manifest

The manifest tells the CE the information needed to execute the module and wire up the inputs and
outputs.

name:
 short_name: test_module_1
 display_name: Test Module 1
authors:
 - T. Andrew Manning
command:
 - 'python3'
 - '/src/main.py'
image:
 registry: "registry.gitlab.com"
 repo: "nsf-muses/calculation-engine/test-module-1"
 tag: "1.0.0"
 source:

url: "https://gitlab.com/nsf-muses/calculation-engine"
git: "https://gitlab.com/nsf-muses/calculation-engine.git"
path: "docker/modules/test-module-1/Dockerfile"
targetRevision: "0.5.2"

docs:
 path: "docs/src"

See this forum post for more details.
Example manifest

https://forum.musesframework.io/t/calculation-engine-prototype-with-basic-workflow-functionality/610
https://gitlab.com/nsf-muses/calculation-engine/-/blob/main/modules/test-module-1/manifest.yaml

Integration: Module manifest
Labels must be unique across both inputs and outputs
inputs:
 - label: config

The name "config" is a reserved word used by the Calculation Engine to
identify where to read the exit code
description: "Configuration of the module runtime options"
path: "/input/config.yaml"
api:

 url: ""
 targetRevision: ""
 path: api/input/config.yaml#/components/schemas/Configuration
outputs:
 - label: status

The name "status" is a reserved word used by the Calculation Engine to
identify where to read the exit code
description: "Module execution status"
path: "/output/status.yaml"
api:

 url: ""
 targetRevision: ""
 path: api/output/status.yaml#/components/schemas/Status
 - label: equation_of_state

description: "Calculated equation of state data"
path: "/output/eos.yaml"
api:

 url: ""
 targetRevision: ""
 path: api/output/Equation_Of_State.yaml#/components/schemas/Equation_Of_State

Integration: Workflow definition

Workflows define the available execution flows and how module inputs and
outputs are connected

workflows:
- name: "eos_to_obs"
 description: "Simulates calculating physical observables from an equation of state."
 ## In task definitions, the module names must match registered modules. The order of
 ## the tasks sequence defines the workflow order. Only piped input/output connections
 ## are defined here. For now only single output-to-input ("one to one") pipes are supported;
 ## supported; output-to-multiple-inputs ("one to many") is not supported.
 tasks:
 - module: "test_module_1"

inputs: []
The labels must match a file description in the module manifest.
outputs:
- label: "equation_of_state"

 ## The "pipe" parameter is defined at the workflow level to indicate which
 ## outputs connect to which inputs in the subsequent task.
 pipe: "EoS"
 - module: "test_module_2"

inputs:
- label: "eos"

 pipe: "EoS"
outputs: []

See this forum post for more details.

https://forum.musesframework.io/t/calculation-engine-prototype-with-basic-workflow-functionality/610

CE database and data transport

A database will be necessary for operational logistics like job management, but it
also must

● store the metadata for data provenance and immutable references
● store the actual output data where feasible, or immutable links to archive files?

Modules may produce files appropriate for their needs (HDF, ZIP, YAML, etc), and
the CE must know how to serve these as well as ingest the contents as needed for
future analysis or interpolation (UTK EoS)

The YAML-formatted output of a module need not directly contain the output data
itself; instead, it could specify a URI to the data

Data provenance and immutable references

● When researchers begin using the hosted MUSES service, they will be
generating data that will yield published scientific results, which demands a
measure of reproducibility

● We must design and implement a way to reference a self-consistent and
immutable
○ Self-consistent means that each datum is associated with a particular CE version (which

captures the individual versions of modules)
○ Immutable means that there is a method of retroactively accessing data or at least

metadata about the processing job suitable for scientific citation

Links

● https://forum.musesframework.io/tag/calculation_engine
● https://gitlab.com/nsf-muses/calculation-engine

https://forum.musesframework.io/tag/calculation_engine
https://gitlab.com/nsf-muses/calculation-engine

Miscellaneous
notes and ideas

Collaborator profile info

● Visit https://musesframework.io/account to
review and update your MUSES
collaborator profile information

● The new web form replaces our original
system where new collaborators would edit
a table of information in a wiki-style post on
the forum.

● This system will make it easier to utilize the
data to generate reports for NSF or
generate author lists when preparing
scientific papers.

● Profile data is now stored in our central
identity system (Keycloak) as user
attributes

https://musesframework.io/account
https://forum.musesframework.io/t/muses-personnel/41
https://forum.musesframework.io/t/muses-personnel/41

Module image build server

● When module registation is updated, a build pipeline can automatically detect
this and build a new tagged image (GitLab CI, GitHub Workflows)

● Do we want to use git tags for image tags? Or directly use the git commit
hash?

Compile centralized documentation

● Develop the pipeline for compiling and publishing the OpenAPI specs for the
registered modules, somewhere under https://musesframework.io/docs/
perhaps. (example from DES)

● The module manifest already includes a field for specifying where
human-centric module documentation resides, so we could also compile the
full documentation at the same time.

● This would be good publicity as well as being actually useful to researchers.

https://musesframework.io/docs/
https://des.ncsa.illinois.edu/desaccess/docs/api/

MUSES JupyterHub

How can we leverage our dedicated JupyterHub service?

● Docker image build iterations, code compilation that takes a long time

● Consistent software environments for module development teams

● Real-time, ad-hoc code and data sharing

You can sync your JupyterHub data to your local machine automatically via
Nextcloud desktop client

