

Influence of the latest resonances from PDG on thermal models and lattice QCD comparisons Jordi Salinas San

In collaboration with: R. Hirayama, J. Hammelmann, J. Karthein, P. Parotto, J. Noronha-Hostler, H. Elfner, C. Ratti, MUSES Collaboration

Jordi Salinas San Martín University of Illinois Urbana-Champaign

2nd MUSES Meeting Champaign, May 16th

Roadmap to a new lattice-based EoS

Merge with lattice

J. Noronha-Hostler, P. Parotto, J. Karthein, C. Ratti, 1902.06723

P. Parotto, D. Mroczek, J. Noronha-Hostler, C. Ratti et al., 1805.05249

J. Karthein, D. Mroczek, A. Acuña Nava, J. Noronha-Hostler, P. Parotto, C. Ratti et al., 2103.08146

Goal: construct a consistent new

EoS that can be used troughout

a HIC simulation

Jordi Salinas San Martín

May 16th 2023

Latest PDG data

- Centralized hadronic database based on the PDG
- Tracks several particle properties, e.g., mass, width, isospin, etc.
- Has all hadrons and their reported branching ratios
- 760 particles
- Updated branching ratios vs. PDG16+
- Contains *-*** particles

A lower limiting temperature

HRG susceptibilities vs LQCD

Disagreement with lattice data hints at missing strange resonances $(\Lambda, \Sigma, \Xi, \Omega)$

A flavor-dependent excluded volume could improve this comparison; see 2107.00588

The new list is consistent with both the previous PDG2016+; more strange particles could improve this too

Excluded volume can capture the drop; see 2107.00588

Jordi Salinas San Martín 4 May 16th 2023

HRG partial pressures vs LQCD

The new PDG2021+ list is in agreement with the previous results from PDG2016+.

Disagreement with lattice data hints at missing strange resonances $(\Lambda, \Sigma, \Xi, \Omega)$

see KLF Collaboration proposal at JLAB, 2207.10779

$$\frac{p}{T^4} = \phi_0 + \phi_{01} \cosh(\mu_S/T) + \phi_{10} \cosh(\mu_B/T) + \phi_{11} \cosh(\mu_B/T - \mu_S/T) + \phi_{12} \cosh(\mu_B/T - 2\mu_S/T) + \phi_{13} \cosh(\mu_B/T - 3\mu_S/T)$$

HRG partial pressures vs LQCD

Thermal model yields

Thermal model yields

Modeling the list with intermediate states

1 → 2 decays needed for SMASH

Model 3 and 4-body decays with intermediate states

SMASH input:

- 1. Particle list
- 2. Decay modes

J. Weil *et al.*, PRC 94 (2016) 054905 D. Oliinychenko *et al.*, SMASH-transport (2021), https://doi.org/10.5281/zenodo.5796168

Identified particles spectra

Identified particles spectra

	$\pi^+ + \pi^-$	$K^+ + K^-$	$p + \overline{p}$
SMASH list	0.7495	1.109	1.6015
PDG2021+ $(1 \rightarrow 2 \text{ decays})$	0.602	0.908	1.4155
$PDG2021+ (1 \rightarrow all decays)$	0.566	0.908	1.4165
Experiment	0.5682 ± 0.0320	0.9177 ± 0.0140	1.4482 ± 0.0244

Although changing the list does not affect the spectra too much, it impacts $\langle p_T \rangle$

The mean-transverse momentum is affected by using $1 \rightarrow 2$ or $1 \rightarrow$ all decays

Open-source code

The list can be easily updated and coupled to external tools

List and generating scripts will be publicly released

Conclusions/Outlook

- Lattice hints at additional strange hadronic states
- Hadronic resonances push HRG toward a better agreement with lattice at temperatures near the transition
- A new list, PDG21+, was built with the latest experimental data available
- The list was implemented into SMASH with help of intermediate states
- Future work is directed towards building an EoS and study freeze-out (J. Karthein, C. Ratti and students)
- KEY TAKEAWAY: If SMASH is used as an afterburner, one wants a consistent EoS-afterburner relation to be consistent with lattice → updated SMASH particle list